

# **MODUL PEMANTAPAN PRESTASI TINGKATAN 5**

# **TAHUN 2017**

### MAJLIS PENGETUA SEKOLAH MALAYSIA (KEDAH)

# MODUL 1

# FIZIK

Kertas 3

Peraturan Pemarkahan

### **BAHAGIAN A**

| No               | Mark Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sub<br>Mark      | Total<br>Mark |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|
| <b>1</b> (a) (i) | <b>State the manipulated variable</b><br>Compression of the spring // x                                                                                                                                                                                                                                                                                                                                                                                                   | 1                |               |
| (ii)             | <b>State the responding variable</b><br>Height of the ball // h // y                                                                                                                                                                                                                                                                                                                                                                                                      | 1                |               |
| (iii)            | State one constant variable<br>Spring constant // Mass of the ball                                                                                                                                                                                                                                                                                                                                                                                                        | 1                | 3             |
| (b) (i)          | <b>Record five values of height y</b><br>y = 1.7, 3.8, 6.5, 9.9, 14.1                                                                                                                                                                                                                                                                                                                                                                                                     | 1                |               |
| (ii)             | Record five value of height h<br>h = 3.2, 5.8, 9.0, 12.9, 17.6<br>All correct: 2 marks;<br>Any 3 to 4 values correct: 1 mark                                                                                                                                                                                                                                                                                                                                              | 2                | 3             |
| (c)              | <b>Tabulate the results</b><br>Table with 4 columns x, y, h and $\sqrt{h}$<br>Correct units for x, y, h and $\sqrt{h}$<br>Correct values for $\sqrt{h}$<br>The values of y h and $\sqrt{h}$ are consistent                                                                                                                                                                                                                                                                | 1<br>1<br>1<br>1 |               |
|                  | x / cmy / cmh / cm $\sqrt{h}$ / cm $\sqrt{2}$ 1.51.73.21.7892.03.85.82.4082.56.59.03.0003.09.912.93.5923.514.117.64.195                                                                                                                                                                                                                                                                                                                                                   |                  | 4             |
| (d)              | Draw a complete graph of $\sqrt{h}$ against x $\sqrt{h}$ at the y-axis, x at the x-axis $\checkmark$ Correct unit $\sqrt{h}$ for and x $\checkmark$ Suitable scale for both axes $\checkmark$ 5 points plotted correctly $\checkmark \checkmark$ [3/4 points correct: $\checkmark$ ]Best straight line $\checkmark$ Size of graph $\checkmark$ $7\checkmark$ : 5 marks5-6 $\checkmark$ : 4 marks3-4 $\checkmark$ : 3 marks $2\checkmark$ : 2 marks $1\checkmark$ : 1 mark | 5                | 5             |
| (e)              | State the correct relationship between $\sqrt{h}$ and x                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                | 1             |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 16            |

| No               | Mark Scheme                                                                                                                                                                                                          | Sub<br>Mark | Total<br>Mark |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
| <b>2</b> (a) (i) | <ul> <li>State the relationship between Q and θ</li> <li>Q is directly proportional to θ</li> </ul>                                                                                                                  | 1           |               |
| (i)              | <ul> <li>State the value of Q when θ = 1.25 °C</li> <li>Show graphical intrapolation correctly</li> <li>Q = 2500 J</li> </ul>                                                                                        | 1           |               |
| (iii)            | <ul> <li>Calculate the gradient of the graph, k</li> <li>Draw a sufficiently large triangle at least 4 × 4 (2 cm × 2 cm) square</li> <li>Correct substitution (follow the candidate's triangle) 5000-1000</li> </ul> | 1           |               |
|                  | $k = \frac{50001000}{2.5 - 0.5}$                                                                                                                                                                                     | 1           |               |
|                  | <ul> <li>State the correct value / answer with correct unit</li> <li>2000 J °C<sup>-1</sup></li> </ul>                                                                                                               | 1           | 6             |
| (b)              | Show the correct substitution<br>- $c = \frac{2000}{5.0 \times 10^{-1}}$<br>- Accept e.c.f. for k                                                                                                                    | 1           |               |
|                  | <b>Correct answer and unit</b><br>- 4000 J kg <sup>-1</sup> °C <sup>-1</sup>                                                                                                                                         | 1           | 2             |
| (c)              | Show the correct substitution<br>- $P = \frac{2500}{0.625}$<br>- Accept e.c.f. for Q from 2(a)(ii)                                                                                                                   | 1           |               |
|                  | Correct answer and unit<br>- 4000 W                                                                                                                                                                                  | 1           | 2             |
| (d)              | State the change in the gradient<br>- decreases                                                                                                                                                                      | 1           | 1             |
| (e)              | <ul> <li>State one correct precaution</li> <li>Connect the wire tightly</li> <li>Position the eyes so that perpendicular to the reading scale of thermometer</li> </ul>                                              | 1           | 1             |
|                  |                                                                                                                                                                                                                      |             | 14            |

#### **BAHAGIAN B**

| No           | Mark Scheme                                                                                                                                                                                                              | Sub<br>Mark | Total<br>Mark |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
| <b>3</b> (a) | <b>State a suitable inference</b><br>The mass affects the rise / change of temperature                                                                                                                                   | 1           | 1             |
| (b)          | <b>State a relevant hypothesis</b><br>The rise / change of temperature decreases as the mass increases                                                                                                                   | 1           | 1             |
| (c)<br>(i)   | <b>Describe a complete and suitable experimental framework</b><br><i>State the aim of the experiment</i><br>To investigate the relationship between mass and rise / change of<br>temperature                             | 1           |               |
| (ii)         | State the variables         Manipulated variable: Mass, m         Responding variable: Rise in temperature /         Change of temperature, θ         Constant variable: Specific heat capacity // Power / Heat supplied | 1<br>1<br>1 |               |
| (iii)        | List out the important apparatus and materials<br>Power supply, Immersion heater, Stirrer, Beaker, Thermometer,<br>Asbestos sheet, Stopwatch, Inertial balance                                                           | 1           |               |
| (iv)         | <b>State a functional arrangement of the apparatus</b><br>Labelled diagram showing set up of apparatus that will function                                                                                                | 1           |               |
| (v)          | <i>State the method to control the manipulated varible</i> 1. 100 g of water is filled in the beaker.                                                                                                                    | 1           |               |
|              | <ul><li>State the method to measure the responding variable</li><li>2. Switch on the power supply to heat up the water for 2 minutes.</li><li>3. Read and record the reading of thermometer.</li></ul>                   | 1           |               |
|              | <ul> <li><i>Repeat the experiment with different mass of water</i></li> <li>4. Repeat the experiment for mass of water, m = 150 g, 200 g, 250 g and 300 g.</li> </ul>                                                    | 1           |               |
| (vi)         | State how the data is tabulated                                                                                                                                                                                          |             |               |
|              | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | 1           |               |
| (vii)        | Show how the data is analysed<br>Plot a graph of $\theta$ against m.                                                                                                                                                     | 1           | 11            |
|              |                                                                                                                                                                                                                          |             | Max 12        |

| No           | Mark Scheme                                                                                                                                                                                                         | Sub<br>Mark | Total<br>Mark |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
| <b>4</b> (a) | <b>State a suitable inference</b><br>The number of turns of secondary coil affects the output voltage                                                                                                               | 1           | 1             |
| (b)          | <b>State a relevant hypothesis</b><br>The output voltage increases as the number of turns of secondary coil increases                                                                                               | 1           | 1             |
| (c)<br>(i)   | <b>Describe a complete and suitable experimental framework</b><br><i>State the aim of the experiment</i><br>To investigate the relationship between the number of turns of<br>secondary coil and the output voltage | 1           |               |
| (ii)         | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                               | 1<br>1<br>1 |               |
| (iii)        | <b>List out the important apparatus and materials</b><br>Copper coils, C-shaped soft iron core, A.C. power supply, A.C<br>voltmeter                                                                                 | 1           |               |
| (iv)         | <b>State a functional arrangement of the apparatus</b><br>Labelled diagram showing set up of apparatus that will function                                                                                           | 1           |               |
| (v)          | <ul> <li>State the method to control the manipulated varible</li> <li>1. Start the experiment with 200 turns of the primary coil and 300 turns of the secondary coil</li> </ul>                                     | 1           |               |
|              | <ol> <li>State the method to measure the responding variable</li> <li>Switch on the power supply</li> <li>Record the reading of output voltage.</li> </ol> Repeat the experiment with different number of turns of  | 1           |               |
|              | secondary coil<br>4. Repeat the experiment with number of turns of secondary coil,<br>$N_s = 400, 500, 600$ and 700 turns.                                                                                          | 1           |               |
| (vi)         | State how the data is tabulated           Ns         Vs / V           300                                                                                                                                           | 1           |               |
| (vii)        | Show how the data is analysed<br>Plot a graph of V <sub>S</sub> against N <sub>S</sub> .                                                                                                                            | 1           | 11            |
|              |                                                                                                                                                                                                                     |             | Max 12        |